Методы выбора альтернатив в условиях риска и неопределенности. Общие принципы

1. ОБЩАЯ МЕТОДИКА ФОРМИРОВАНИЯ КРИТЕРИЕВ

Суть предлагаемой методики формирования критериев заключается в реализации следующих пунктов.

1) Из выигрышей аij, i=1,…,m; j=1,…,n, игрока А составляем матрицу А, предполагая, что она удовлетворяет указанным выше условиям: m³2, n³2 и она не содержит доминируемых (в частности, дублируемых) строк.

Выигрыши аij игрока А, представленные в виде матрицы А, дают возможность лучшего обозрения результатов выбора стратегий Аi, i=1,…,m, игроком А при каждом состоянии природы Пj, j=1,…,n.

2) Фиксируем распределение удовлетворяющих условию (1) вероятностей qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…n, разумеется, если они известны. Таким образом, пункт 2 участвует в методике формирования критерия в случае принятия решения в условиях риска.

3) На основании пунктов 1 и 2 выбираем натуральное число l, 1£l£n, и определенным образом строим матрицу


Назовем их коэффициентами формируемого критерия. Они призваны играть роль количественных оценок некоторых субъективных проявлений игрока А (лица, принимающего решение), а именно степени доверия к распределению вероятностей состояний природы и степени его пессимизма (оптимизма) при принятии решений.

5) Используя матрицу В и коэффициенты l1,…, ll, каждой стратегии Аi, i=1,…,m, игрока А поставим в соответствие число


7) Определим оптимальную стратегию.

Оптимальной стратегией назовем стратегию Аk с максимальным показателем эффективности, другими словами, - стратегию, показатель эффективности Gk которой совпадает с ценой игры G:


Понятно, что такое определение оптимальной стратегии не влечет ее единственности.

Отметим, что по логике этого пункта игрок А, выбирая оптимальную стратегию, максимизирует показатель Gi (см. (5)). Это обстоятельство оправдывает то, что этот показатель мы назвали (в пункте 5) показателем эффективности.

2. ФОРМИРОВАНИЕ НЕКОТОРЫХ ИЗВЕСТНЫХ КРИТЕРИЕВ-ЧАСТНЫЕ СЛУЧАИ ОБЩЕЙ МЕТОДИКИ

Критерий Байеса (, , , ).

1) Пусть А является матрицей выигрышей игрока А.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1). Следовательно, речь идет о принятии решения в условиях риска.

3) Полагаем l=n и матрицу В выбираем равной матрице А, т.е.

bij=aij для всех i=1,…,m и j=1,…,n.

4) Коэффициенты l1,…,ln, выбираем равными соответствующим вероятностям q1,…,qn, т.е. ll=qi, i=1,…,n. Этим самым игрок А выражает полное доверие к истинности распределения вероятностей q1,…,qn, состояний природы.

Из (1) следует, что коэффициенты lj, j=1,…,n удовлетворяют условию (3).

5) Показатель эффективности стратегии Аi по критерию Байеса обозначим через Вi и находим его по формуле (3):


Очевидно, что Вi – средневзвешенный выигрыш при стратегии Аi с весами q1,…,qn.

Если стратегию Аi трактовать как дискретную случайную величину, принимающую значения выигрышей при каждом состоянии природы, то вероятности этих выигрышей будут равны вероятностям состояний природы и тогда Вi есть математическое ожидание этой случайной величины (см. (6)).

6) Цена игры по критерию Байеса, обозначаемая нами через В, определяется по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Байеса является стратегия Аk, для которой показатель эффективности максимален:

Критерий Лапласа (, , , ).

2) Исходя из теоретических, либо из практических соображений, констатируется, что ни одному из возможных состояний природы Пj, j=1,…,n, нельзя отдать предпочтения. Потому все состояния природы считают равновероятностными, т.е. qj=n-1, j=1,…,n. Этот принцип называют принципом «недостаточного основания» Лапласа. Вероятности qj=n-1, j=1,…,n, удовлетворяют условию (1).

Поскольку вероятности состояний природы известны: qj=n-1, j=1,…,n, то мы находимся в ситуации принятия решения в условиях риска.

3) Пусть l=n, а в качестве матрицы В можно взять матрицу, получающуюся из матрицы А, если каждую строку последней заменить на произвольную перестановку ее элементов. В частности, можем положить В=А. В общем же случае элементы матрицы В имеют вид bij=aikj(i), i=1,…, m; j=1,…,n, где aik1(i), aik2(i),…,aikn(i) – некоторая перестановка элементов ai1, ai2,…,ain i-й строки матрицы А.

4) Пусть коэффициенты lj=n-1, j=1,…,n. Очевидно, они удовлетворяют условию (2).

Выбор коэффициентов lj, j=1,…,n, таким образом подтверждает полное доверие игрока А к принципу недостаточного основания Лапласа.

5) По формуле (3) показатель эффективности стратегии Аi по критерию Лапласа, обозначаемый нами через Li, равен:


7) Оптимальной стратегией Аk по критерию Лапласа является стратегия с максимальным показателем эффективности:

Заметим, что, как следует из (7) и (8), показатель эффективности Li будет максимальным тогда и только тогда, когда максимальной будет сумма , и потому в качестве показателя эффективности стратегии Аi можно рассмотреть число , а в качестве цены игры – число .

Тогда оптимальной будет стратегия, сумма выигрышей при которой максимальна.

Критерий Вальда ( – ).

1) Предположим, что А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую-либо статистическую информацию. Поэтому игрок А находится в ситуации принятия решения в условиях неопределенности.

3) Пусть l=1 и


4) Пусть коэффициент l1=1. Очевидно, условие (2) выполняется.

5) Обозначим показатель эффективности стратегии Аi по критерию Вальда через Wi. В силу (9) и значения коэффициента l1=1, по формуле (3) имеем:


Таким образом, показатель эффективности стратегии Аi по критерию Вальда есть минимальный выигрыш игрока А при применении им этой стратегии.

6) Цена игры по критерию Вальда, обозначим ее через W, находится по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Вальда является стратегия Аk с максимальным показателем эффективности:

Другими словами, оптимальной среди чистых стратегий по критерию Вальда считается та чистая стратегия, при которой минимальный выигрыш является максимальным среди минимальных выигрышей всех чистых стратегий. Таким образом, оптимальная стратегия по критерию Вальда гарантирует при любых состояниях природы выигрыш, не меньший максимина:


В силу (10), критерий Вальда является критерием крайнего пессимизма игрока А, а количественным выражением этого крайнего пессимизма является значение коэффициента l1, равное 1. Игрок А, принимая решение, действует по принципу наибольшей осторожности.

Хотя арабская пословица и гласит: «Кто боится собственной тени, тому нет места под солнцем», - тем не менее этот критерий уместен в тех случаях, когда игрок А не столько хочет выиграть, сколько не хочет проиграть. Использование принципа Вальда в обиходе подтверждается такими поговорками как «Семь раз отмерь – один раз отрежь», «Береженого Бог бережет», «Лучше синица в руках, чем журавль в небе».

Критерий Ходжа-Лемана .

1) Предположим, что матрицей выигрышей игрока А является матрица А.

2) Известны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Таким образом, игроку А надлежит принимать решение в условиях риска.

3) Пусть l=2,


· показатель эффективности стратегии Аi по критерию Байеса.

Матрица В примет вид


Очевидно, что эти коэффициенты удовлетворяют условию (2).

5) По формуле (3), с учетом (11), (12), и (13), показатель эффективности стратегии Аi по критерию Ходжа-Лемана равен:

Gi=libi1+l2bi2=(1-l)Wi+lBi=(1-l)aij+ i=1,…,m.

В правой части формулы (14) коэффициент lÎ есть количественный показатель степени доверия игрока А данному распределению вероятностей qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, а коэффициент (1-l) характеризует количественно степень пессимизма игрока А. Чем больше доверия игрока А данному распределению вероятностей состояний природы, тем меньше пессимизма и наоборот.

6) Цену игры по критерию Ходжа-Лемана находим по формуле (4):

7) Оптимальной стратегией по критерию Ходжа-Лемана является стратегия Аk с наибольшим показателем эффективности:

Отметим, что критерий Ходжа-Лемана является как-бы промежуточным критерием между критериями Байеса и Вальда. При l=1, из (14) имеем:Gi=Bi и потому критерий Ходжа-Лемана превращается в критерий Байеса. А при l=0, из (14): Gi=Wi и, следовательно, из критерия Ходжа-Лемана получаем критерий Вальда.

Критерий Гермейера .

1) Пусть матрица А является матрицей выигрышей игрока А.

2) Даны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Т.о. игрок А находится в ситуации принятия решений в условиях риска

размера m x 1.

4) Полагаем l1=1. Условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по критерию Гермейера определяем по формуле (3) с учетом (15) и того, что l1=1:


Если игрок А придерживается стратегии Аi, то вероятность выигрыша aij при этой стратегии и при состоянии природы Пj равна, очевидно, вероятности qj этого состояния природы. Поэтому формула (16) показывает, что показатель эффективности стратегии Аi по критерию Гермейера есть минимальный выигрыш при этой стратегии с учетом его вероятности.

6) Цена игры по критерию Гермейера определяется по формуле (4):

7) Оптимальной стратегией по критерию Гермейера считается стратегия Аk с наибольшим показателем эффективности:

Заметим, что критерий Гермейера можно интерпретировать как критерий Вальда, применимый к игре с матрицей


Критерий Гермейера так же, как и критерий Вальда является критерием крайнего пессимизма игрока А, но, в отличие от критерия Вальда, игрок А, принимая решение с максимальной осмотрительностью, учитывает вероятности состояний природы.

В случае равномерного распределения вероятностей состояний природы: qj=n-1, j=1,…,n, показатель эффективности стратегии Аi, в силу формулы (16), будет равен Gi=n-1aij и, следовательно, критерий Гермейера эквивалентен критерию Вальда, т.е. стратегия, оптимальная по критерию Гермейера, оптимальна и по критерию Вальда, и наоборот.

Критерий произведений .

1) Пусть матрицей выигрышей игрока А является матрица А, все элементы которой положительны:

aij>0, i=1,…,m; j=1,…,n.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, и удовлетворяют условию (1).

3) Пусть l=1 и


размера m x 1.

4) Пусть l1=1. Условие (2) выполняется.

5) Показатель эффективности стратегии Аi по критерию произведений в соответствии с формулами (3) и (17) равен

.

6) Цена игры по критерию произведений вычисляется по формуле (4):

7) Оптимальной стратегией по критерию произведений является стратегия Аk с наибольшим показателем эффективности:

Отметим, что для критерия произведений является существенным положительность всех состояний вероятностей состояний природы и всех выигрышей игрока А.

Максимаксный критерий (.-).

2) Вероятность состояний неизвестны. Решение принимается в условиях неопределенности.

3) Пусть l=1 и


размера m x 1.

4) Коэффициент l1 выбираем равным 1: l1=1. При этом условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по максимаксному критерию обозначим через Мi и определим его по формуле (3) с учетом (18) и того, чтоl1=1:


Таким образом, показатель эффективности стратегии Аi по максимаксному критерию есть наибольший выигрыш при этой стратегии.

6) Цена игры по максимаксному критерию, обозначаемая нами через М, определяется по формуле (4):


Очевидно, что это есть наибольший элемент матрицы А.

7) Оптимальная стратегия по максимаксному критерию есть стратегия Аk с наибольшим показателем эффективности:

Из формулы (19) заключаем, что максимаксный критерий является критерием крайнего оптимизма игрока А. Количественно это выражается тем, что l1=1. Этот критерий противоположен критерию Вальда. Игрок А, пользуясь максимаксным критерием, предполагает, что природа П будет находиться в благоприятнейшем для него состоянии, и, как следствие отсюда, ведет себя весьма легкомысленно, с «шапкозакидательским» настроением, поскольку уверен в наибольшем выигрыше. Вместе с тем, в некоторых случаях этим критерием пользуются осознанно, например, когда перед игроком А стоит дилемма: либо получить наибольший выигрыш, либо стать банкротом. Бытовое отражение подобных ситуаций иллюстрируется поговорками: «Пан или пропал», «Кто не рискует, тот не выигрывает» и т.п.

Оптимальная стратегия по максимальному критерию гарантирует игроку А возможность выигрыша, равного максимаксу.

.

Критерий пессимизма-оптимизма Гурвица с показателем оптимизма lÎ ( – ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны и нет возможности получить о них какую–либо надежную статистическую информацию.

Таким образом, решение о выборе оптимальной стратегии будет приниматься в условиях неопределенности.

3) Положим l=2. Элементы матрицы В


4) Коэффициенты l1 и l2 выбираем следующим образом:


В формуле (22) l - показатель оптимизма, а (1-l) – показатель пессимизма игрока А при выборе им оптимальной стратегии. Чем ближе к единице показатель оптимизма, тем ближе к нулю показатель пессимизма, и тем больше оптимизма и меньше пессимизма. И наоборот. Если l=0,5, то и 1-l=0,5, т.е. показатели оптимизма и пессимизма одинаковы. Это означает, что игрок А при выборе стратегии ведет себя нейтрально.

Таким образом, число l выбирается в пределах от 0 до 1 в зависимости от склонности игрока А к оптимизму или пессимизму.

6) Цена игры по критерию Гурвица Н определяется из формулы (5):


7) Оптимальная стратегия Аk по критерию Гурвица соответствует показателю эффективности

Критерий Гурвица является промежуточным между критерием Вальда и максимаксным критерием и превращается в критерий Вальда при l=0 и - в максимаксный критерий при l=1.

Обобщенный критерий Гурвица с коэффициентами l1,…, ln (, ).

1) Пусть А – матрица выигрышей игрока А.

2) Вероятности состояний природы неизвестны. Так что решение принимается в условиях неопределенности.

3) Матрица В получается из матрицы А перестановкой элементов каждой ее строки в неубывающем порядке:

bi1£bi2£…£bin, i=1,…,m.

Таким образом, в 1-м столбце матрицы В стоят минимальные, а в n-м столбце максимальные выигрыши стратегий. Другими словами, в 1-м столбце матрицы В стоят показатели эффективности стратегий по критерию Вальда, а в n-м столбце – показатели эффективности стратегий по максимаксному критерию.

4) Коэффициенты l1,…, ln выбираются удовлетворяющими условиям (2) соответственно различной степени склонности игрока А к оптимизму. При этом показателем пессимизма игрока А называется число


где целая часть числа , а показателем оптимизма игрока А называется число


Очевидно, что lр+l0=1.

5) Показатель эффективности стратегии Аi по обобщенному критерию Гурвица определяется по формуле (3):


6) Цену игры по обобщенному критерию Гурвица определим по формуле (4):

7) Оптимальные стратегии находятся стандартно: Аk – оптимальная стратегия, если Gk=G.

Отметим, что обобщенный критерий Гурвица учитывает все выигрыши при каждой стратегии, что необходимо для более полной картины эффективности стратегий. Отметим также, что некоторые из приведенных выше критериев являются частными случаями обобщенного критерия Гурвица.

Отметим, что если В=А, то коэффициенты lj, j=1,…,n, можно формально интерпретировать как вероятности состояний природы и в, таком случае, обобщенный критерий Гурвица совпадает с критерием Байеса.

Если lj=n-1, j=1,…,n, то обобщенный критерий Гурвица превращается в критерий Лапласа.

Если l1=1, l2=…=ln=0, то обобщенный критерий Гурвица представляет собой критерий Вальда.

При l1=…=ln-1=0, ln=1, из обобщенного критерия Гурвица получаем максимаксный критерий.

Если l1=1-l, l2=…=ln-1=0, ln=l, где lÎ, то обобщенный критерий Гурвица является критерием Гурвица.

Если В=А и qi=p(Пj), j=1,…,n – вероятности состояний природы, удовлетворяющие условиям (1), то выбрав коэффициенты lj, j=1,…,n, следующим образом: l1=1-l+lq1, lj=lqj, j=2,…,n, где lÎ, мы из обобщенного критерия Гурвица получим критерий Ходжа Лемана.

3. ЗАДАЧА В УСЛОВИЯХ ПОЛНОЙ НЕОПРЕДЕЛЁННОСТИ

Допустим, инвестор принимает решение о строительстве жилья определенного типа в некотором месте. Инвестор действует в условиях неопределенности (информационной непрозрачности) на рынке жилья. Чтобы сформировать представление о ситуации на рынке жилья на момент завершения строительства ему необходимо учесть цены на недвижимость, конкуренцию на рынке жилья, соотношение предложения и спроса, курсы валют и многое другое. Статистические данные свидетельствуют о том, что одной из главных составляющих стоимости жилья является место его расположения.

Рассмотрим математическую модель данной ситуации. Мы имеем игру с природой, где игрок А – инвестор, природа П – совокупность возможных ситуаций на рынке жилья на момент завершения строительства, из которых можно сформировать, например, пять состояний П1, П2, П3, П4, П5 природы. Известны приближенные вероятности этих состояний q1=p(П1)»0,30; q2=p(П2)»0,20; q3=p(П3)»0,15; q4=p(П4)»0,10; q5=p(П5)»0,25. Предположим, что игрок А располагает четырьмя (чистыми) стратегиями А1, А2, А3, А4, представляющими собой выбор определенного места для постройки жилья. Множество этих мест ограничено градостроительными решениями, стоимостью земли и т.д. Инвестиционная привлекательность проекта определяется как процент прироста дохода по отношению к сумме капитальных вложений, оценка которых известна при каждой стратегии и каждом состоянии природы. Эти данные представлены в следующей матрице выигрышей игрока А:


размера 4 х 5, в последней, дополнительной строке которой указаны вероятности состояний природы. Матрица (24) не содержит доминируемых (в частности, дублируемых) строк и все ее элементы положительны.

Инвестору предстоит выбрать участок земли так, чтобы наиболее эффективно использовать капиталовложения.

Подсчитаем показатели эффективности стратегий

· по критериям Байеса, Гермейера и критерию произведений при условии, что инвестор А доверяет данному распределению вероятностей состояний природы,

· по критерию Лапласа, если инвестор А не доверяет данному распределению вероятностей состояний природы и не может отдать предпочтения ни одному из рассматриваемых состояний природы,

· по критерию Ходжа- Лемана с коэффициентом доверия к вероятностям состояний природы, например, l=0,4,

· по критерию Вальда, максимаксному критерию, критерию пессимизма-оптимизма Гурвица с показателем оптимизма, например, l=0,6, и по обобщенному критерию Гурвица с коэффициентами, например, l1=0,35; l2=0,24; l3=0,19; l4=0,13; l5=0,09.

Результаты подсчета показателей эффективности и оптимальные стратегии представлены в следующей таблице:

Таблица показателей эффективности и оптимальных стратегий

Стратегии

Критерии

Ходжа-Лемана

Гермейгера

Произ-ведений

Макси-максный

Обобщенный Гурвица с коэффиц

l1=0,35
l2=0,24
l3=0,19
l4=0,13
l5=0,09

Оптимал. стратегии


Заметим, что, поскольку, в критерии Ходжа- Лемана показатель доверия игрока А распределению вероятностей состояний, указанных в последней строке матрицы (24), равен l=0,4, то показатель пессимизма игрока А равен 1-l=0,6.

В критерии Гурвица показатель оптимизма игрока А равен l=0,4 и, следовательно, показатель его пессимизма также равен 1-l=0,6.

В обобщенном критерии Гурвица по формуле (23) показатель пессимизма

= 0,35+0,24+0,5×0,19=0,685

и, следовательно, показатель оптимизма l0=1-0,685=0,315.

Таким образом, во всех примененных критериях, учитывающих индивидуальные проявления игрока А к пессимизму и оптимизму, игрок А более склонен к пессимистической оценке ситуации, чем к оптимистической, примерно с одинаковыми показателями.

В результате применения девяти критериев мы видим, что в качестве оптимальной стратегии А1 выступает 3 раза, стратегия А3 – 6 раз и стратегия А4 – 1 раз. Поэтому, если у инвестора А нет никаких обоснованных серьезных возражений, то в качестве оптимальной можно рассматривать стратегию А3.

См. П.Н. Брусов, п. 3.8., А.Н. Гармаш, п. 3.3.2.

Неопределенность будем рассматривать как такое состояние знаний лица, принимающего решения (ЛПР), при котором одно или несколько альтернативных решений приводят к блоку возможных результатов, соответствующих различным состояниям внешней среды («природы»), вероятности которых неизвестны. Обычно это происходит потому, что отсутствуют надежные данные, на основании которых вероятности могли бы быть вычислены апостериори, а также потому, что нет каких-либо способов вывести вероятности априори. В этих условиях для определения наилучших, так называемых рациональных, решений можно использовать элементы теории игр, в частности, игры с природой. В них один игрок (человек) старается действовать осмотрительно, а второй игрок (природа) дей­ствует случайно.

Игры с природой – это игры, в которых неопределенность вызва­на не сознательным противодействием противника, а недостаточной осведомленностью об условиях, в которых действуют стороны. Например, заранее неизвестна погода в некотором регионе или покупательский спрос на некоторую продукцию.

Условия такой игры обычно представляются таблицей решений , в которой строки А 1 , А 2 , ..., А m соответствуют стратегиям ЛПР (лица, принимающего решение), а столбцы В 1 , В 2 , … В n – стратегиям при­роды; а ij – выигрыш ЛПР, соответствующий каждой паре стратегий А i , В j .

Возможные стратегии b 1 b 2 b n
а 1 а 1 1 а 1 2 а 1 n
а m а m1 а m2 а mn

В рассматриваемой ситуации при выборе из множества { а 1 , а 2 ,..., а m } наилучшего решения обычно используют следующие критерии.

1. Критерий Вальда. Основывается на принципе пессимизма (наибольшей осторожности). При выборе решения надо рассчитывать на худший вариант действий со стороны природы. Рекомендуется применять максиминную стратегию. Она выбирается из условия

и совпадает с нижней ценой игры.

2. Критерий максимума. Он выбирается из условия

Критерий максимума является оптимистическим: считается, что природа будет наиболее благоприятна для человека.

где – степень оптимизма (показатель пессимизма-оптимизма) – изменяется в диапазоне .

Критерий Гурвица придерживается некоторой промежуточной позиции, учитывающей возможность как наихудшего, так и наилуч­шего поведения природы. При = 1 критерий превращается в кри­терий Вальда, при = 0 – в критерий максимума. На оказывает влияние степень ответственности лица, принимающего решение по выбору стратегии. Чем больше последствия ошибочных решений, больше желания застраховаться, тем ближе к единице.

4. Критерий Сэвиджа. Суть критерия состоит в выборе такой стра­тегии, чтобы не допустить чрезмерно высоких потерь, к которым она может привести. Находится матрица рисков , элементы которой по­казывают, какой убыток понесет человек (фирма), если для каждого состояния природы он не выберет наилучшей стратегии:

R =

Элементы матрицы рисков находятся по формуле

,

где – максимальный элемент в столбце исходной матрицы.

При принятии решений в условиях неопределенности следует оценивать различные варианты с точки зрения нескольких критериев. Если рекомендации совпадают, можно с большей уверенностью выбрать наилучшее решение; если рекомендации противоречат друг другу, окончательное решение надо принимать с учетом резуль­татов дополнительных исследований.

Пример. В приближении посевного сезона фермер имеет четыре аль­тернативы: А 1 – выращивать кукурузу, А 2 – пшеницу, А 3 – овощи или A 4 – использовать землю под пастбища. Платежи, связанные с указан­ными возможностями, зависят от количества осадков, которые условно можно разделить на четыре категории: B 1 – сильные осадки, В 2 – умерен­ные, В 3 – незначительные, B 4 – засушливый сезон.

Платежная матрица оценивается следующим образом:

Какое управленческое решение должен принять фермер?

Решение.

Следует использовать землю под пастбища.

2. Критерий максимума:

Max(80,90,150,35)=150.

Это соответствует стратегии А 3 – выращивать овощи.

2. Воспользуемся критерием Сэвиджа . Составим матрицу рисков, эле­менты которой находим по формуле

Оптимальная стратегия определяется выражением

В соответствии с этим критерием следует сеять пшеницу.

3. Воспользуемся критерием Гурвица . Оптимальная стратегия опреде­ляется по формуле

Предположим, что степень оптимизма Тогда

т.е. следует принять решение о выращивании овощей.

4. Правило максимизации среднего ожидаемого дохода. Если допустить, что известно распределение вероятностей для различных состояний природы, например эти состояния равновероятны (правило Лапласа равновозможности) то для принятия решения следует найти матема­тические ожидания выигрыша:

Так как максимальное значение имеет М 2 , то следует сеять пшеницу.

Вывод : два критерия одновременно рекомендуют выбор управленческой стратегии А 2 (сеять пшеницу), два критерия рекомендуют стратегию А 3 (выращивать овощи) .

Из таблицы видно, что оптимальное поведение во многом зависит от принятого критерия выбора наилучшего решения, поэтому выбор критерия является наименее простым и наиболее ответственным вопросом в теории игр.

Принятие решений в условиях частичной неопределенности (см. П.Н. Брусов, п. 3.9).

Оптимальная по Парето финансовая операция. Рассмотрим матрицу последствий , i=1,2,…,m, j=1,2,…,n. Альтернатива доминирует по Парето альтернативу , если , j=1,2,…,n, и, по крайней мере, для одного индекса j это неравенство строгое. Доминируемая альтернатива не может быть оптимальным решением, т.к. она по всем показателям не «лучше» доминирующей альтернативы. Альтернатива называется Парето-оптимальной (или оптимально по Парето ), если она не диминируется никакой другой альтернативой.

Все Парето-оптимальные решения образуют множество оптимальности по Парето .

Пример. Для матрицы последствий найти множество альтернатив, оптимальных по Парето.

0,4 0,9 0,5 0,5 0,6
0,6 0,5 0,7 0,8 0,9
0,6 0,3 0,8 0,6 0,7
0,3 0,8 0,5 0,4 0,3
0,1 0,3 0,5 0,4 0,3
0,4 0,8 0,5 0,4 0,5

В таблице – возможные альтернативы (стратегии) ЛПР, – одно из состояний неопределенной реальной ситуации.

Решение.

Стратегия доминирует над стратегиями , и . Следовательно, исключаем 4-ю, 5-ю и 6-ю строки матрицы.

Игроки
0,4 0,9 0,5 0,5 0,6
0,6 0,5 0,7 0,8 0,9
0,6 0,3 0,8 0,6 0,7

Больше доминируемых стратегий нет. Получаем множество оптимальности по Парето, состоящее из трех альтернатив: , , .

Для выбора некоторой стратегии ОС должна иметь возможность оценить насколько она хороша или плоха. Так как результаты операции оцениваются критерием операции, то и оценка эффективности основывается на этой функции. Оценки эффективности могут быть различными в зависимости как от информации, которой обладает ОС, так и от субъективных решений ОС.

В случае принятия решения в условиях определенности критерий операции имеет вид f: XR, т.е. зависит только от контролируемых факторов, характеризует достижение цели одним числом, и при этом наибольшему достижению цели соответствует максимальное (минимальное) значение функции f. Тогда оптимальной будет такая стратегия x * Х, которая доставляет максимум (минимум) функции f;

В случае, когда в операции присутствуют неконтролируемые факторы (Y, Z) ОС оценить свою стратегию становится значительно труднее. Существует несколько разумных способов оценки стратегий и ОС необходимо выбрать один из них, либо некоторую комбинацию критериев.

Оценка эффективности стратегий в условиях неопределенности

Рассмотрим случай, когда Z , то есть нет случайных факторов, и m= 1

Тогда наиболее распространенными являются следующие способы оценки эффективности стратегий.

Принцип наилучшего гарантированного результата (критерий Вальда). Предполагается, что для каждой стратегии хX ОС будет реализовываться наиболее плохой для ОС неопределенный фактор уY. Так, если цель ОС максимизировать «выигрыш» f(x,y), то любая стратегия хX оценивается величиной

Оценку W 1 (х) (3) называют еще оценкой крайнего пессимизма. Таким образом, в рассматриваемом случае величина W 1 (x) оценивает «выигрыш» ОС снизу, то есть, выбрав стратегию хX, ОС получит «выигрыш» f(x,y) не меньший, чем W 1 (x), какое бы уY не реализовалось. Иными словами, при применении стратегии х ОС гарантировано получит выигрыш не меньший величины W 1 (х). Оптимальной по этому критерию будет стратегия x 0 , доставляющая максимум функции W 1 (х) на множестве X.

Применение принципа наилучшего гарантированного результата обосновано, когда выбор неопределенного фактора уY осуществляет разумный противник, ставящий своей целью уменьшение «выигрыша» ОС.

В случае, когда ОС стремится минимизировать величину f(x,y), вместо оценки W 1 (x) (3) применяется аналогичная оценка

Соответственно

Если ОС не противостоит разумный противник, применение принципа наилучшего гарантированного результата может показаться сильно «пессимистичным». В этих случаях говорят об «играх с природой». Неконтролируемые факторы выбирает «природа», основываясь на своих, неизвестных ОС, целях. Однако, нет оснований предполагать, что «природа» старается навредить ОС. Наиболее известными в данной ситуации являются критерии Лапласа, Сэвиджа и Гурвица.

Критерий Лапласа. Этот критерий основывается на следующем принципе недостаточного обоснования. Поскольку распределение вероятностей на неопределенных факторах неизвестно, то принимаем, что это распределение является распределением равномерного закона.

Еще раз напомним, что в рассматриваемых случаях ОС не противостоит разумный противник, который выбирает неконтролируемый фактор с целью максимально ухудшить результат операции для ОС.

Критерий Лапласа оценивает стратегию хX величиной математического ожидания выигрыша ОС при равномерном законе распределения вероятностей неконтролируемых факторов. Оптимальной по этому критерию считается стратегия, доставляющая максимум (если нужно максимизировать целевую функцию) математическому ожиданию целевой функции

Здесь - функция плотности распределения вероятностей равномерного закона; p i - вероятность того, что неконтролируемый фактор примет значение y i . При этом

Первая формула применяется в случае непрерывной случайной величины y. Вторая формула для конечного множества Y={y 1 ,…,y m }.

Пример 3. Предприятие должно определить уровень предложения услуг так, чтобы удовлетворить потребность клиентов в течение предстоящих праздников. Точное число клиентов неизвестно, но оно может принимать одно из четырех значений: y 1 =200, y 2 =250, y 3 =300, y 4 =350. Для каждого из этих возможных значений существует наилучший уровень предложения (x 1, …,x 4) с точки зрения минимизации затрат. Отклонения от этих уровней приводят к дополнительным затратам либо из-за превышения предложения над спросом, либо из-за неполного удовлетворения спроса (дополнительные расходы из-за необходимости срочных закупок, упущенная прибыль).

Стратегию x 1 , то при худшем для него варианте y=y 1 затраты возрастут по сравнению с гарантированным результатом на 1%, а при благоприятном варианте затраты составят только 0.9% от гарантированных затрат, т.е. уменьшатся на 99.1%.

Учесть подобные ситуации и реализовать выбор стратегии, дающей возможно небольшой проигрыш, но и возможно существенный выигрыш по сравнению со стратегией гарантированного результата, позволяет критерий Сэвиджа. Пусть целевая функция f(x,y) есть функция выигрыша ОС. Следовательно, ОС стремится максимизировать целевую функцию. Составим функцию сожаления:

Величина выражает «сожаление» ОС в том, что она для данного неопределенного фактора y выбрала стратегию x, а не лучшую стратегию

Функцию называют также функцией риска. Затем для функции применяется критерий наилучшего гарантированного результата, то есть оптимальное х 0 ищется следующим образом. Для каждого контролируемого фактора хX

В случае, когда в модели операции задана функция потерь (проигрыша), функция сожаления будет иметь вид

и опять выражает «сожаление» ОС о том, что она для данного неопределенного фактора yY применила стратегию x, a не лучшую стратегию:

Функция сожаления и в случае функции выигрыша f (формула (5)) и в случае функции потерь f (формула (7)) выражает величину потерь ОС от неприменения лучшей стратегии. Поэтому критерий наилучшего гарантированного результата в обоих случаях является минимаксным:

Составим матрицу сожаления для приведенного в начале пункта примера. Так как функция f(i, j) в данном примере есть функция потерь, то

Функцию 2 (i, j) запишем в виде матрицы S сожалений:

Теперь из критерия наилучшего гарантированного результата для матрицы S получаем, что оптимальной будет стратегия х 1.

Рассмотрим пример 3. Так как в этом примере задана функция потерь, то функция сожаления (i, j) вычисляется по формуле (7).

2 (1,3)=21-5=16 и т. д.

Результаты вычислений запишем в виде матрицы S:

Для нахождения оптимальной по критерию Сэвиджа стратегии ОС найдем по матрице сожалений S стратегию х 0 , удовлетворяющую принципу наилучшего гарантированного результата. Для этого в силу (8) нужно найти максимальный элемент в каждой строке матрицы S. Обозначим его b 1 , b 2 , b 3 , b 4 , соответственно. Затем необходимо найти наименьшее из чисел b i . Тогда номер i * : b i*= min{b j }- определит оптимальную стратегию. В примере 3 b 1 =10, b 2 =8, b 3 =16, b 4 =25. Соответственно, i 0 =2, так как b 2 =min{b 1 ;b 2 ;b 3 ;b 4 }. Следовательно, стратегия х 2 является оптимальной по критерию Сэвиджа в данном примере. Этот ответ совпадает с ответом, полученным по критерию Лапласа.

Таким образом, для приведенной в примере 3 функции потерь оптимальной и по критерию Лапласа, и по критерию Сэвиджа является стратегия х 2 . Однако из приведенного примера не стоит делать вывод, что такое совпадение будет всегда выполняться. Можно привести пример, когда эти два критерия будут считать оптимальными различные стратегии.

Критерий Гурвица. Для определения следующего критерия нам понадобится понятие выпуклой комбинации.

Определение 13. Число с называется выпуклой комбинацией чисел a и b, если существует число [О;1] такое, что

Отметим, что множество всех таких чисел образует отрезок . Критерий Гурвица является выпуклой комбинацией критериев крайнего пессимизма W 1 (x, у) и крайнего оптимизма:

Здесь мы считаем, что задана функция выигрыша f(x, y). Критерий крайнего оптимизма предполагает, что неопределенный фактор yY - максимально содействует ОС в ее стремлении увеличить свой выигрыш. Итак, в случае, когда задана функция выигрыша f(x, y) ОС критерий Гурвица имеет вид:

Оптимальной в этом случае считается стратегия х 0 X, доставляющая максимум функции W 5 (x), т.е.

W 5 (х 0)=W 5 (x).

Для функции потерь (х, у) критерий Гурвица задается равенством:

Оптимальной при этом считается стратегия х 0 X, на которой достигается минимум функции W 6 (х), т. е.

W 6 (x 0)=W 6 (x).

Параметр называется показателем оптимизма: при =1 критерий Гурвица превращается в критерий крайнего оптимизма, при =0 - в критерий крайнего пессимизма. Выбор параметра осуществляется ОС, исходя из ее взглядов на данную операцию, то есть является субъективным.

Найдем решение задачи из примера 3 по критерию Гурвица в случае = 0.2. Имеем соответственно:

W 6 (x 2) = =19.8, W 6 (x 3) = = 19.2,

W 6 (х 4) = = 27.

Анализируя зависимость выбора оптимальной стратегии от значения, получим:

(0.5; 1] - оптимальная стратегия х 1 ;

0.5 - оптимальные стратегии х 1 и х 2 ;

(2/7; 0.5) - оптимальная стратегия x 2 ;

2/7 - оптимальные стратегии x 2 и х 3 ;

5 10 18 25 0.25 (5+10+18+25)=14.5 j =1

A = 8 7 8 23 0.25 (8+7+8+23)=11.5

21 18 12 21 0.25 (21+18+12+21)=18

20 22 19 15 0.25 (20+22+19+15)=19

Получаем H =max [ 1/n ∑ а ij ] =19 при применении стратегии А 4 .

Ответ: оптимальной стратегией первого игрока является

стратегия А 4 .

В 1 В 2 В 3 В 4 n

А 1 5 10 18 25 H =max∑P j а ij

А 2 8 7 8 23 i j =1

А 3 21 18 12 21

А 4 20 22 19 15

Вероятности стратегий второго игрока.

В 1 В 2 В 3 В 4
0.2 0.15 0.35 0.3

5*0.2+10*0.15+18*0.35+25*0.3=16.30

8*0.2+7*0.15+8*0.35+23*0.3=12.35

21*0.2+18*0.15+12*0.35+21*0.3=17.40

20*0.2+22*0.15+19*0.35+15*0.3=18.45

Получаем Н = 18,45 при применении стратегии А 4 .

Ответ: оптимальной стратегией первого игрока является

стратегия А 4 .

ПРИМЕР №2

Предприятие имеет возможность самостоятельно планировать объемы выпуска сезонной продукции А 1 , А 2 , А 3 . Не проданная в течении сезона продукция позже реализуется по сниженной цене. Данные о себестоимости продукции, отпускных ценах и объемах реализации в зависимости от уровня спроса приведены в таблице:



Требуется:

1) придать описанной ситуации игровую схему, указать допустимые стратегии сторон, составить платежную матрицу

Указание. Для уменьшения размерности платежной матрицы считать, что одновременно на все три вида продукции уровень спроса одинаков:

повышенный, средний или пониженный.

В игре участвуют 2 игрока: А - производитель, В - потребитель.

Игрок А стремится реализовать свою продукцию так, чтобы получить максимальную прибыль. Стратегиями игрока А являются:

А 1 - продавать продукцию при повышенном состоянии спроса

А 2 - продавать продукцию при среднем состоянии спроса

А 3 - продавать продукцию при пониженном состоянии спроса

Игрок В стремится приобрести продукцию с минимальными затратами. Стратегиями игрока В являются:

В 1 - покупать продукцию при повышенном состоянии спроса

В 2 - покупать продукцию при среднем состоянии спроса

В 3 - покупать продукцию при пониженном состоянии спроса

Интересы игроков А и В - противоположны. Определим цену продукции в течение сезона и после уценки:

Рассчитаем элементы платежной матрицы

Предложение Спрос
стратегии Повышенный спрос 14+38+24 Средний спрос 8+22+13 Пониженный спрос 5+9+7
Повышенный спрос 14+38+24 14*0,8+38*0,5+ 24*1,3=61,4 8*0,8+(14-8) *0,2+ 22*0,5+(38-22)*(-5) +13*1,3+(24-13)*0,2 =29,7 5*0,8+(14-5)*0,2+ 9*0,5+(38-9)*(-5)+ 7*1,3+(24-7)=8,3
Средний спрос 8+22+13 8*0,8+22*0,5+ 13*1,3=34,3 8*0,8+22*0,5+ 13*1,3=34,3 5*0,8+(8-5)*0,2+ 9*0,5+(22-9)*(-5)+ 7*1,3+(13-7)*0,2 =12,9
Пониженный спрос 5+9+7 5*0,8+9*0,5+7*1,3 =17,6 5*0,8+9*0,5+ 7*1,3=17,6 5*0,8+9*0,5+ 7*1,3=17,6

Платежная матрица примет вид

Стратегии В 1 В 2 В 3 α i =min а ij j
А 1 61.4 29.7 8.3 8.3
А 2 34.3 34.3 12.9 12.9
А 3 17.6 17.6 17.6 17.6
β j =max а ij i 61.4 34.3 17.6

α = max α i = 17.6 β = min β j = 17.6

Так как α = β = ν = 17,6, то найдена седловая точка. Значит оптимальное решение: А 3 ; В 3

Производитель (игрок А) получит гарантированную прибыль в размере 17,6 ден.ед., если будет реализовывать свою продукцию при пониженном уровне спроса в объеме 5,9 и 7 ед. соответственно продукции А 1 , А 2 и А 3

Контрольные вопросы:

1.Дайте определение конфликтной ситуации.

2.Как называется математическая модель конфликтной ситуации?

3.Как называются заинтересованные стороны в теории игр?

4.Какая игра называется антагонистической? Приведите пример.

5.Дайте определение понятию «стратегия».

6.Что понимается под исходом конфликта?

7.Дайте определение понятию «выигрыш».

8.На какие классы делятся игры в зависимости от числа игроков?

9.В чем состоит цель игрока А при выборе стратегии?

10. В чем состоит суть максиминного принципа оптимальности и как называется выигрыш, полученный в соответствии в этим принципом?

11.Почему максимин α называют нижней ценой игры?

12.В чем состоит цель игрока В при выборе стратегии?

13.Почему минимакс β называют верхней ценой игры?

14.Почему справедливо неравенство α < β ?

15.Дайте определение цены игры в чистых стратегиях.

16.Какая игра называется игрой в смешанных стратегиях?

17.Как найти оптимальную смешанную стратегию игрока А и цену игры 2 х n геометрически?

18.Что в теории игр понимается под термином «природа»?

19.Приведите примеры в которых решение принимается в условиях неопределенности, связанной с неосознанным принятием различных факторов.

20.Чем отличается выбор оптимальных стратегий игроков в играх с природой от антагонистических игр?

21.Что понимается под риском игрока в игре с природой, и каким образом формируется матрица рисков,

22.Дайте определение критерия Вальда и как по нему определяется выигрыш?

23. Дайте определение критерия Севиджа и как по нему определяется выигрыш?

24. Дайте определение критерия Лапласа и как по нему определяется выигрыш?

25. Дайте определение критерия Байеса и как по нему определяется выигрыш?

26. Какой принцип выбора оптимальной стратегии лежит в основе критерия пессимизма –оптимизма Гурвица относительно выигрышей?

8.Лекция. Системы массового обслуживания.

Пример. Фирма готова перейти к массовому выпуску нового вида продукции, но не знает, когда лучше это сделать: немедленно, через 1 год или даже через 2 года. Дело в том, что новая продукция в силу своей дороговизны, очевидно, не сразу найдет массового покупателя. Поэтому излишняя торопливость может привести к тому, что оборотные средства фирмы окажутся надолго иммобилизованными в осевшей на складах готовой продукции, а это грозит убытками. Но медлить тоже нельзя: конкуренты перехватят инициативу, и значительная часть ожидаемой прибыли будет упущена. Фирма не смогла даже приблизительно оценить вероятности для разных сроков появления массового спроса. Поэтому налицо ситуация неопределенности.

Возможные последствия от принимаемых решений в условиях разной реакции рынка на новую продукцию представлены ниже в табл. 10.10.

Таблица 10.10

Как видно из таблицы, немедленный переход к массовому выпуску нового вида продукции может дать наибольшую прибыль, но в случае неудачи грозит большими убытками. Другие варианты выбора срока перехода к массовому производству данного вида продукции исключают возможность возникновения убытков, но дают относительно меньшую прибыль.

Выбор оптимального решения здесь затруднен отсутствием сведений о вероятностях той или иной реакции рынка.

Для выбора оптимальной стратегии в ситуации неопределенности используются следующие критерии:

Критерий MAXIMAX определяет альтернативу, максимизирующую максимальный результат для каждого состояния возможной действительности. Это критерий крайнего оптимизма. Наилучшим признается решение, при котором достигается максимальный выигрыш, равный

Запись вида m f x означает поиск максимума перебором столбцов, а запись вида т ^ х - поиск максимума перебором строк в матрице выплат.

Нетрудно увидеть, что для нашего примера наилучшим решением будет размер выплат в 16 млн у.с., т.с. немедленный переход к новому выпуску продукции.

Следует заметить, что ситуации, требующие применения такого критерия, в общем, нередки и пользуются им нс только безоглядные оптимисты, но и игроки, вынужденные руководствоваться принципом «или пан или пропал».

Максиминный критерий Вальда еще называют критерием пессимиста, поскольку при его использовании как бы предполагается, что от любого решения надо ожидать самых худших последствий и, следовательно, нужно найти такой вариант, при котором худший результат будет относительно лучше других худших результатов. Таким образом, он ориентируется на лучший из худших результатов .

Расчет максимина в соответствии с приведенной выше формулой состоит из двух шагов.

Находим худший результат каждого варианта решения, т.е. величину min Ху (табл. 10.11).

Расчет максимина (первый шаг)

Из худших результатов, представленных в столбце минимумов, выбираем лучший. Он стоит на второй строке таблицы выплат, что предписывает приступить к массовому выпуску новой продукции через год.

Это перестраховочная позиция крайнего пессимиста. Такая стратегия приемлема, когда инвестор не столь заинтересован в крупной удаче, но хочет застраховать себя от неожиданных проигрышей. Выбор такой стратегии определяется отношением принимающего решения лица к риску.

Критерий MINIMAX, или критерий Сэвиджа, в отличие от предыдущего критерия ориентирован нс столько на минимизацию потерь, сколько на минимизацию сожалений по поводу упущенной прибыли. Он допускает разумный риск ради получения дополнительной прибыли. Пользоваться этим критерием для выбора стратегии поведения в ситуации неопределенности можно лишь тогда, когда есть уверенность в том, что случайный убыток нс приведет фирму (проект) к полному краху.

Расчет данного критерия включает в себя четыре шага.

  • 1. Находим лучшие результаты каждого в отдельности столбца, т.с. шах Ху. Таковыми в нашем примере будут для первого столбца 16, для второго - 12 и третьего - 5. Это тс максимумы, которые можно было бы получить, если бы удалось точно угадать возможные реакции рынка.
  • 2. Определяем отклонения от лучших результатов в пределах каждого отдельного столбца, т.е. шах Ху - Ху. Получаем матрицу отклонений, которую можно назвать матрицей сожалений, ибо ее элементы - это недополученная прибыль от неудачно принятых решений из-за ошибочной оценки возможной реакции рынка. Матрицу сожалений можно оформить в виде табл. 10.12.

Матрица сожалений

Судя по приведенной матрице, не придется ни о чем жалеть, если фирма немедленно перейдет к массовому выпуску новой продукции и рынок сразу же отреагирует на это массовым спросом. Однако если массовый спрос возникнет только через 2 года, то придется пожалеть о потерянных вследствие такой поспешности 12 млн у.с.

3. Для каждого варианта решения, т.с. для каждой строки матрицы сожалений, находим наибольшую величину. Получаем столбец максимумов сожалений в виде табл. 10.13.

Таблица 10.13

Максимальные сожаления

4. Выбираем то решение, при котором максимальное сожаление будет меньше других. В приведенном столбце максимальных сожалений оно стоит на второй строке, что предписывает перейти к массовому выпуску через год.

Критерий пессимизма-оптимизма Гурвица при выборе решения рекомендует руководствоваться некоторым средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. То есть критерий выбирает альтернативу с максимальным средним результатом (при этом действует негласное предположение, что каждое из возможных состояний среды может наступить с равной вероятностью). Формально данный критерий выглядит так:

где к - коэффициент пессимизма, который принадлежит промежутку от О до 1 в зависимости оттого, как принимающий решение оценивает ситуацию. Если он подходит к ней оптимистически, то эта величина должна быть больше 0,5. При пессимистической оценке он должен взять упомянутую величину меньше 0,5.

При к = 0 критерий Гурвица совпадает с максимаксиым критерием, а при к = 1 - с критерием Вальда.

Рассчитаем критерий Гурвица для условий нашего примера, придав упомянутому параметру значение на уровне 0,6:

Я, = 16 х 0,6 + (-6) х 0,4 - 7,2;

Я 2 - 12 х 0,6 + 2 х 0,4 = 8;

Я: , = 6 х 0,6 + 0 х 0,4 = 3,6.

По максимуму значения данного критерия надо принять решение о переходе к массовому выпуску новой продукции через год.

В нашем примере стратегия Л 2 фигурирует в качестве оптимальной но трем критериям выбора из четырех испытанных, степень ее надежности можно признать достаточно высокой для того, чтобы рекомендовать эту стратегию к практическому применению. Действительно, в нашем примере при таком решении не придется особенно сожалеть об упущенной прибыли и не придется ожидать больших убытков, т.е. сразу минимизируются и сожаления об упущенной прибыли, и возможные убытки.

Имитационное моделирование по методу Монте-Карло (Monte - Carlo Simulation) позволяет построить математическую модель для проекта с неопределенными значениями параметров и, зная вероятностные распределения параметров проекта, а также связь между изменениями параметров (корреляцию), получить распределение доходности проекта.

Процедура имитации Монте-Карло базируется на последовательности следующих шагов (рис. 10.6).

Метод Монте-Карло наиболее полно характеризует всю гамму неопределенностей, с которой может столкнуться реальный инвестиционный проект, и через задаваемые изначально ограничения позволяет учитывать всю доступную проектному аналитику информацию. Практическая реализация данного метода возможна только с применением компьютерных программ, позволяющих описывать прогнозные модели и рассчитывать большое число случайных сценариев.

Одним из программных продуктов, реализующих метод Монте-Карло, является пакет «Risk Master» (RM), разработанный в Гарвардском университете с целью обучения студентов экспертизе ин- всстиционн ых п роектов.


Рис. 10.6.

Структурно программа RM включает два блока - имитационный и аналитический. В ходе работы первого из них происходит имитация методом Монте-Карло модели инвестиционного проекта, построенной в электронных таблицах. Задачей второго блока программы является анализ полученных на первом этапе результатов и вычисление показателей совокупного риска проекта.

15 процессе работы программы RM математическая модель проекта подвергается повторяющимся имитациям, в ходе каждой из которых ключевые рисковые переменные выбираются случайным образом в соответствии с заранее заданными распределениями вероятностей и условиями корреляции. Затем проводится статистический анализ результатов всех имитаций для получения распределения вероятностей результирующего показателя проекта.

Рассмотрим эти стадии подробнее.

1. Построение математической модели инвестиционного проекта - это первая стадия анализа рисков в соответствии с программой RM. Модель содержит алгебраические и (или) логические соотношения между его факторами (переменными). Она должна включать в себя все важные для проекта переменные (и не включать лишних), а также правильно отражать корреляционные связи между ними. Кроме того, одно из важных требований при разработке модели состоит в необходимости точно предсказывать проектный результат, получаемый на основании внутри модельной обработки входной информации.

Успешное завершение первой стадии позволяет перейти к следующей. Среди известных и важных для проекта факторов выявляются ключевые рисковые проектные переменные. Риск проекта в целом представляет собой функцию риска отдельных переменных оценочной модели, поэтому следует различать, во-первых, тс из них, к которым очень чувствителен результат проекта, и, во-вторых, те, которые обладают высокой степенью неопределенности (сильный разброс значений). Другими словами, есть переменные, значения которых варьируют в большом интервале, не оказывая существенного влияния на отдачу проекта, и есть переменные достаточно стабильные, но даже небольшие отклонения их значений могут вызывать значительный разброс отдачи проекта. Поэтому разбиение всех факторов проекта на соответствующие группы является необходимым по двум причинам:

  • ? во-первых, чем больше рисковых переменных включено в математическую модель, тем сложнее отразить все корреляционные связи между ними;
  • ? во-вторых, затраты, необходимые для нахождения распределений вероятностей и корреляционных зависимостей большого числа переменных, могут превысить выгоду от включения этих переменных в модель.

В связи с этим, представляется целесообразным сфокусировать внимание и имеющиеся ресурсы на определении и проверке предположений относительно наиболее чувствительных (анализ чувствительности) и неопределенных (анализ неопределенности) факторов модели.

Затем в два этапа осуществляется определение распределений вероятностей для выбранных ключевых рисковых переменных.

Первый этап - определение возможного разброса значений для каждой переменной, заключающееся в установлении максимального и минимального значений переменной, т.е. границ, в которых предположительно будут колебаться се значения.

Второй этап - определение распределений вероятностей . По прошлым наблюдениям за переменной можно установить частоту, с которой та принимает соответствующие значения. В этом случае вероятностное распределение есть то же самое частотное распределение, показывающее частоту встречаемости значения, правда, в относительном масштабе (от 0 до 1). Вероятностное распределение регулирует вероятность выбора значений из определенного интервала. В соответствии с заданным распределением модель оценки рисков будет выбирать произвольные значения переменной. До рассмотрения рисков мы подразумевали, что переменная принимает одно определенное нами значение с вероятностью 1. И через единственную итерацию расчетов мы получали однозначно определенный результат. В рамках модели вероятностного анализа рисков проводится большое число итераций, позволяющих установить, как ведет себя результативный показатель (в каких пределах колеблется, как распределен) при подстановке в модель различных значений переменной в соответствии с заданным распределением.

Задача аналитика, занимающегося анализом риска, состоит в том, чтобы хотя бы приблизительно определить для исследуемой переменной вид вероятностною распределения. При этом основные вероятностные распределения, используемые в анализе рисков, могут быть следующими (рис. 10.7): симметричное (например, нормальное, равномерное, треугольное) и несимметричное (например, пошаговое).


Рис. 10.7.

Стадия установления корреляционных связей является очень важной для результативности всего процесса анализа рисков, так как ошибки в выявлении существующих коррелированных переменных модели ведут к серьезным искажениям модельных результатов. Допустим, что цена и количество проданного продукта есть две отрицательно коррелированные переменные. Если не будет учтена связь между ними (коэффициент корреляции), то возможны сценарии, случайно вырабатываемые компьютером, где цена и количество проданной продукции будут либо высоки, либо низки, что естественно негативно отразится на результатах. Поэтому перед проведением имитационных расчетов необходимо выявить все корреляционные зависимости и задать значения коэффициентов корреляции. К достоинствам программного пакета RM относится возможность отражения множественных корреляционных связей.

  • 2. Стадия анализа рисков - проведение расчетных итераций почти полностью выполняется компьютером, па долю аналитика проектных рисков выпадает лишь необходимость задать количество проводимых итераций (от 8 до 10 000). 200-500 итераций обычно достаточно для получения хорошей репрезентативной выборки. В процессе каждой итерации происходит случайный выбор значений ключевых переменных специфицированного интервала в соответствии с вероятностными распсделениями и условиями корреляции. Затем рассчитываются и сохраняются результативные показатели (например, NPV). И так далее, от итерации к итерации.
  • 3. Последней стадией в анализе проектных рисков является анализ результатов , интерпретация результатов, полученных в ходе итерационных расчетов.

Результаты анализа рисков можно представить в виде профиля риска (рис. 10.8). На нем графически показывается вероятность каждого возможного случая (имеются в виду вероятности возможных значений результативного показателя). Часто при сравнении вариантов капиталовложений удобнее пользоваться кривой, построенной на основе суммы вероятностей (кумулятивный профиль риска). Такая кривая показывает вероятность того, что результативный показатель проекта будет больше или меньше определенного значения. Проектный риск , таким образом, описывается положением и наклоном кумулятивного профиля риска.


Рис. 10.8.

Рассмотрим пять иллюстративных случаев принятия решений (учебные материалы Института экономического развития Всемирного банка). Случаи 1-3 имеют дело с решением инвестировать в отдельно взятый проект, тогда как два последних случая (4, 5) относятся к решению-выбору из альтернативных проектов. В каждом случае рассматривается как кумулятивный, так и некумулятивный профили риска для сравнительных целей. Кумулятивный профиль риска более полезен в случае выбора наилучшего проекта из представленных альтернатив , в то время как некумулятивный профиль риска лучше индуцирует вид распределения и показателен для понимания концепций, связанных с определением математического ожидания. Анализ базируется на показателе чистой текущей стоимости NPV.

Случай 1. Минимально возможное значение NPV выше, чем нулевое (рис. 10.9, кривая 1). Вероятность отрицательного NPV равна 0, так как нижний конец кумулятивного профиля риска лежит справа от нулевого значения NPV. Поскольку данный проект имеет положительное значение NPV во всех случаях, ясно, что проект принимается.

Рис. 10.9.

Случай 2. Максимальное возможное значение NPV ниже нулевого (рис. 10.9, кривая 2). Вероятность положительного NPV равна 0, так как верхний конец кумулятивного профиля риска лежит слева от нулевого значения NPV. Поскольку данный проект имеет отрицательное значение NPV во всех случаях, ясно, что проект нс принимается.

Случай 3. Максимальное значение NPV больше, а минимальное - меньше нулевого (рис. 10.9, кривая 3). Вероятность нулевого NPV больше, чем 0, но меньше, чем 1, так как вертикаль нулевого NPV пересекает кумулятивный профиль рисков. Так как NPV может быть как отрицательным, так и положительным, решение будет зависеть от предрасположенности к риску инвестора. По-видимому, если математическое ожидание NPV меньше или равно 0 (пик профиля рисков слева от вертикали или вертикаль точно проходит по пику), проект должен отклоняться от дальнейшего рассмотрения.

Случай 4. Непересекающиеся кумулятивные профили рисков альтернативных (взаимоисключающих) проектов (рис. 10.10). При фиксированной вероятности отдача у проекта В всегда выше, нежели у проекта А. Профиль рисков также говорит о том, что при фиксированной NPV вероятность, с которой та будет достигнута, начиная с некоторого уровня, будет выше для проекта В, чем для проекта А. Таким образом, мы подошли к правилу 1.

Рис. 10.10.

Правило 1. Если кумулятивные профили рисков двух альтернативных проектов не пересекаются ни в одной точке, тогда следует выбирать тот проект, чей профиль рисков расположен правее.

Случай 5. Пересекающиеся кумулятивные профили рисков альтернативных проектов (рис. 10.11). Склонные к риску инвесторы предпочтут возможность получения высокой прибыли и, таким образом, выберут проект А. Несклонные к риску инвесторы предпочтут возможность нести низкие потери и, вероятно, выберут проект В.

Рис. 10.11.

Правило 2. Если кумулятивные профили риска альтернативных проектов пересекаются в какой-либо точке, то решение об инвестировании зависит от склонности к риску инвестора.

Рассмотрим наиболее распространенные показатели совокупного риска проекта.

Ожидаемая стоимость агрегирует информацию, содержащуюся в вероятностном распределении. Она получается умножением каждого значения результативного показателя на соответствующую вероятность и последующего суммирования результатов. Сумма всех отрицательных значений показателя, перемноженных на соответствующие вероятности, есть ожидаемый убыток. Ожидаемый выигрыш - сумма всех положительных значений показателя, перемноженных на соответствующие вероятности. Ожидаемая стоимость есть, конечно, их сумма.

15 качестве индикатора риска ожидаемая стоимость может выступать как надежная оценка только в ситуациях, где операция, связанная с данным риском, может быть повторена много раз. Хорошим примером такого риска служит риск, страхуемый страховыми компиниями, когда последние предлагают обычно одинаковые контракты большому числу клиентов. В инвестиционном проектировании мера ожидаемой стоимости должна всегда применяться в комбинации с мерой вариации, такой как стандартное отклонение.

Инвестиционное решение не должно базироваться лишь на одном значении ожидаемой стоимости, потому что индивид не может быть равнодушен к различным комбинациям значения показателя отдачи и соответствующей вероятности, из которых складывается ожидаемая стоимость.

Издержки неопределенности , или ценность информации, как они иногда называются, - понятие, помогающее определить максимально возможную плату за получение информации, сокращающей неопределенность проекта. Эти издержки можно определить как ожидаемую стоимость возможного выигрыша при решении отклонить проект или как ожидаемую стоимость возможного убытка при решении принять проект.

Ожидаемая стоимость возможного выигрыша при решении отклонить проект иллюстрируется на рис. 10.12 и равна сумме возможных положительных значений NPV, перемноженных на соответствующие вероятности.

Ожидаемая стоимость возможного убытка при решении принять проект, показанная в виде заштрихованной площади на рис. 10.13, равна сумме возможных отрицательных значений NPV, перемноженных на соответствующие вероятности.

Оценив возможное сокращение издержек неопределенности при приобретении дополнительной информации, инвестор решает, отложить решение принять или отклонить проект и искать дополнитель-


Рис. 10.13.

Рис. 10.12. Ожидаемая стоимость возможного выигрыша при решении отложить проект ную информацию или принимать решение немедленно. Общее правило таково: инвестору следует отложить решение, если возможное сокращение в издержках неопределенности превосходит издержки добывания дополнительной информации.

Нормированный ожидаемый убыток - отношение ожидаемого убытка к ожидаемой стоимости. Этот показатель может принимать значения от 0 (отсутствие ожидаемого убытка) до 1 (отсутствие ожидаемого выигрыша). На рисунке 10.13 он представляется как отношение площади под профилем риска слева от нулевого NPV ко всей площади под профилем риска.

Проект с вероятностным распределением NPV, таким что область определения профиля риска NPV выше 0, имеет нормируемый ожидаемый убыток, равный 0, что означает абсолютную неподверженность риску проекта. Проект, область определения профиля риска NPV которого ниже 0, полностью подвержен риску.

Данный показатель определяет риск как следствие двух вещей: наклона и положения профиля риска NPV по отношению к разделяющей вертикали нулевого NPV.

Несмотря на свои достоинства, метод Монте-Карло нс распространен и не используется слишком широко в бизнесе. Одна из главных причин этого - неопределенность функций плотности переменных, которые используются при подсчете потоков наличности.

Другая проблема, которая возникает как при использовании метода сценариев, так и при использовании метода Монте-Карло, состоит в том, что применение обоих методов нс даст однозначного ответа на вопрос о том, следует ли реализовывать данный проект или следует отвергнуть его.

При завершении анализа, проведенного методом Монте-Карло, у эксперта есть значение ожидаемой чистой приведенной стоимости проекта и плотность распределения этой случайной величины. Однако наличие этих данных нс обеспечивает аналитика информацией о том, действительно ли прибыльность проекта достаточно велика, чтобы компенсировать риск по проекту, оцененный стандартным отклонением и коэффициентом вариации.

Ряд исследователей избегают использования данного метода ввиду сложности построения вероятностной модели и множества вычислений, однако при корректности модели метод дает весьма надежные результаты, позволяющие судить как о доходности проекта, так и о его устойчивости (чувствительности).

В зависимости от результатов завершенного анализа рисков, а также и от того, насколько склонен к риску инвестор, последний принимает решение принять, изменить или отклонить проект.

Например, инвестор, исходя из своей склонности к риску, действовал бы следующим образом:

? Риск > 30%.

В случае если показатель риска, а это прежде всего нормированный ожидаемый убыток (НОУ), равен или превышает 30%, то для принятия проекта необходимо предварительно внести и осуществить предложения по снижению риска. Под предложениями понимаются любые действия по изменению данных на входе, способные уменьшить риск, не обрекая проект на убыточность.

В этих целях используются разработанные заранее правила поведения участников в определенных «нештатных» ситуациях (например, сценарии, предусматривающие соответствующие действия участников при тех или иных изменениях условий реализации проекта).

В проектах могут предусматриваться также специфические механизмы стабилизации, обеспечивающие защиту интересов участников при неблагоприятном изменении условий реализации проекта (в том числе, в случаях, когда цели проекта будут достигнуты нс полностью или не достигнуты вообще) и предотвращающие возможные действия участников, ставящие под угрозу его успешную реализацию. В одном случае может быть снижена степень самого риска (за счет дополнительных затрат на создание резервов и запасов, совершенствование технологий, уменьшение аварийности производства, материальное стимулирование повышения качества продукции), в другом - риск перераспределяется между участниками (индексирование цен, предоставление гарантий, различные формы страхования, залог имущества, система взаимных санкций).

Как правило, применение в проекте стабилизационных механизмов требует от участников дополнительных затрат, размер которых зависит от условий реализации мероприятия, ожиданий и интересов участников, их оценок степени возможного риска. Такие затраты подлежат обязательному учету при определении эффективности проекта.

Здесь работает балансировка между риском и прибыльностью. Если на этом этапе удается снизить риск так, что НОУ становится меньше 30%, и есть выбор среди такого рода вариантов проекта, то лучше выбрать тот из них, у которого коэффициент вариации меньше. Если же не удается снизить риск до указанной отметки, проект отклоняется.

? Риск

Проекты с риском менее 30% (НОУ Предлагается создать страховой фонд в размере определенной доли от основной суммы инвестирования. Как определить эту долю - это вопрос методики. Можно принять се равной значению показателя риска (нормированный ожидаемый убыток). То есть, например, если риск равен 25%, то необходимо, скажем, предусмотреть отчисления от нераспределенной прибыли в процессе осуществления проекта или заключить договор со страховой компанией на сумму в размере 25% от основной суммы инвестирования и направить эти деньги в резерв, подлежащий использованию только в случае наступления крайних ситуаций, связанных, например, с незапланированным недостатком свободных денежных средств, а также другими проблемами, в целях нормализации финансово-экономической ситуации. На самом деле источник оплаты страхового фонда скорее всего будет зависеть от периода осуществления проекта. В самый трудный в финансовом отношении начальный момент осуществления проекта у предприятия вряд ли найдется возможность обойтись без внешнего окружения при создании страхового фонда, например, на базе страховой компании. Но по мере осуществления проекта у предприятия накапливается прибыль, ежегодные отчисления от которой могли бы составить страховой фонд.